

Order, Order!

 them from smallest to lamgeastua ceaentitsebsitupes are not drawn to scale.

Order, Order!

Here are some different shapes. Calculate their area and order them from smallest to largest area. The shapes are not drawn to scale.

Order, Order!

Here are some different shapes. Calculate their area and order them from smallest to largest area. The shapes are not drawn to scale.

Order, Order!

How can we convert metres to centimetres?

Order, Order!

We convert metres to centimetres by multiplying the measurements by 100.

Order, Order!

We convert metres to centimetres by multiplying the measurements by 100.

Order, Order!

Then we can find the area in centimetres and order the shapes by area.

Order, Order!

Then we can find the area in centimetres and order the shapes by area.

Order, Order!

Order = A, C, D, E, B

Estimating the Area of Irregular Shapes

Here is an irregular shape. We can estimate the area by counting squares.

Estimating the Area of Irregular Shapes

Here is an irregular shape. We can estimate the area by counting squares.

Estimating the Area of Irregular Shapes

Here is an irregular shape. We can estimate the area by counting squares.

Estimating the Area of Irregular Shapes

Here is an irregular shape. We can estimate the area by counting squares.

Estimating the Area of Irregular Shapes

Here is an irregular shape. We can estimate the area by counting squares.

Estimating the Area of Irregular Shapes

Here is another irregular shape.

We can estimate the area by counting squares in the same way.

Estimating the Area of Irregular Shapes

Here is another irregular shape.
We can estimate the area by counting squares in the same way.

Estimating the Area of Irregular Shapes

Here is another irregular shape.
We can estimate the area by counting squares in the same way.

Estimating the Area of Irregular Shapes

Here is another irregular shape.
We can estimate the area by counting squares in the same way.

Estimating the Area of Irregular Shapes

Here is another irregular shape.
We can estimate the area by counting squares in the same way.

Estimating the Area of Irregular Shapes

Here is another irregular shape.
We can estimate the area by counting squares in the same way.

Estimating the Area of Irregular Shapes

Here is another irregular shape.
We can estimate the area by counting squares in the same way.

Estimating the Area of Irregular Shapes

Here is an irregular shape without any straight edges at all. We can still estimate the area by counting squares!
see if you can work out the area by following the steps you have used in the previous slides.

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \\
\hline
\end{array}
$$

Estimating the Area of Irregular Shapes

Here is an irregular shape without any straight edges at all． We can still estimate the area by counting squares！

Add the whole squares and half filled squares together：

$$
16+10=26 \text { squares }
$$

The area of this shape is approximately 26 squares．

The Zoo

Look at your plan of the Penguin Enclosure at the Zoo.

twinkl.com

The Zoo

a) the whole enclosure

The Zoo
b) the pool

The Zoo

How could you calculate the area of the land within the enclosure?

alarin

The Zoo

How could you calculate the area of the land within the enclosure?

The Zoo

How could you calculate the area of the land within the enclosure?

The Zoo

How could you calculate the area of the land within the enclosure?

The Zoo

How could you calculate the area of the land within the enclosure?

IIII
twinkl.com

The Zoo

If we count the squares and half filled or more squares of the non-water area:

The Zoo

If we subtract the area of the pool from the area of the whole enclosure:

